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Tapping Into Better 
Digital AudioKEITH HOWARD EXAMINES THE BACKGROUND AND PHILOSOPHY BEHIND ROB WATTS’ 
ULTRA-LONG FILTERS, FOUND IN CHORD ELECTRONICS DACS, ESPECIALLY THE M SCALER

I
t’s an interesting piece of  historical coincidence 
that 1948 was both the year that Columbia 
Records announced the LP and the year 

in which Claude Shannon’s famous paper A 
Mathematical Theory of  Communication [1] was 
published, describing the mathematical basis of  
signal sampling and thus digital audio. It is now 
acknowledged that Shannon wasn’t actually the 
first to visit this territory; others, including English 
mathematician Edmund Whittaker, had elucidated 
all or part of  the theory earlier. But Shannon’s paper 
really launched the field of  information theory and 
paved the way – awaiting the necessary technological 
advances – to the digitisation of  all manner of  
continuous signals, not just audio waveforms.
	 Few audiophiles knew of  this area of  mathematics 
or its potential application to audio signals until, 
starting in 1972, the BBC began to replace audio 
landlines to its transmitters with 13-bit Nicam PCM 
digital audio links running at 32kHz sampling rate 
with companding (compression for transmission and 
subsequent expanding on receipt). The first, from 
Broadcasting House to the Wrotham transmitter 
in North Kent, began operating on 14 September 
that year, and the network was then progressively 
expanded. Later in the 1970s the first digital recorders 
were developed of  sufficient quality (arguably…), to 
be used by pioneering record labels such as Denon 
and Decca. Then, in 1982/3, the Compact Disc 
arrived – the first digital audio music carrier.
	 Given that it’s 35 years since CD went on sale in 
Europe, you might suppose that most audiophiles 
would now have a firm grasp of  the basics of  
sampling theory, but in truth it remains widely 
misunderstood. And not just by audio amateurs 
but audio professionals too, if  Rob Watts, Chord 
Electronics’ Digital Design Consultant, is correct. For 
years Watts has been bucking the conventional audio 
industry practice of  using relatively short – sometimes 
very short – digital filters in high oversampled DACs. 
As technology has allowed it, his filters have become 
longer and longer. And each time filter length is 
increased, he says, sound quality improves.
	 Watts’ long quest to achieve a sufficiently long 

filter that no further increase is of  subjective benefit 
reached its latest apotheosis with the announcement, 
at the London CamJam show in July, of  the Chord 
Electronics M Scaler (see Box-out), a digital in, digital 
out upsampler that for the first time features over 
one million filter taps, ie the linear-phase FIR (finite 
impulse response) interpolation filter employed 
has over one million coefficients: 1,015,808 to 
be precise. To put this number into perspective, 
most oversampling DACs use filters that are a few 
hundred taps (coefficients) in length at most. Even 
Dave, Chord’s best current standalone DAC, uses 
‘only’ 164,000 filter taps.
	 Understanding Watts’ relentless pursuit of  longer 
interpolation filters – each step of  which has opened 
a still wider gap between him and accepted industry 
practice – requires going back to grass roots: to 
Shannon’s sampling theory, and particularly to the 
‘sinc’ function.

Fig 1. Central portion of  the sinc(x) function

	 Sinc(x) is mathematical shorthand for the 
function sin(x)/x, which looks (over its central part) 
like Fig 1. The reason for the x-axis (horizontal 
axis) being labelled ‘sampling intervals’ will 
become apparent shortly. What Shannon showed 
in his famous paper was that any bandlimited 
continuous signal – that is, any analogue signal with 
a strict limit on its maximum frequency – can be 
exactly described as a sum of  time-spaced sinc(x) 
waveforms. 
	 Not only that, if  the signal is sampled, ie if  its 
amplitude is measured, at regular intervals, at a rate at 

HFC_issue51_Final.indd   16 21/08/2018   08:21

16 HIFICRITIC  JUL | AUG | SEP 2018

n  FEATURE

Tapping Into Better 
Digital AudioKEITH HOWARD EXAMINES THE BACKGROUND AND PHILOSOPHY BEHIND ROB WATTS’ 
ULTRA-LONG FILTERS, FOUND IN CHORD ELECTRONICS DACS, ESPECIALLY THE M SCALER

I
t’s an interesting piece of  historical coincidence 
that 1948 was both the year that Columbia 
Records announced the LP and the year 

in which Claude Shannon’s famous paper A 
Mathematical Theory of  Communication [1] was 
published, describing the mathematical basis of  
signal sampling and thus digital audio. It is now 
acknowledged that Shannon wasn’t actually the 
first to visit this territory; others, including English 
mathematician Edmund Whittaker, had elucidated 
all or part of  the theory earlier. But Shannon’s paper 
really launched the field of  information theory and 
paved the way – awaiting the necessary technological 
advances – to the digitisation of  all manner of  
continuous signals, not just audio waveforms.
	 Few audiophiles knew of  this area of  mathematics 
or its potential application to audio signals until, 
starting in 1972, the BBC began to replace audio 
landlines to its transmitters with 13-bit Nicam PCM 
digital audio links running at 32kHz sampling rate 
with companding (compression for transmission and 
subsequent expanding on receipt). The first, from 
Broadcasting House to the Wrotham transmitter 
in North Kent, began operating on 14 September 
that year, and the network was then progressively 
expanded. Later in the 1970s the first digital recorders 
were developed of  sufficient quality (arguably…), to 
be used by pioneering record labels such as Denon 
and Decca. Then, in 1982/3, the Compact Disc 
arrived – the first digital audio music carrier.
	 Given that it’s 35 years since CD went on sale in 
Europe, you might suppose that most audiophiles 
would now have a firm grasp of  the basics of  
sampling theory, but in truth it remains widely 
misunderstood. And not just by audio amateurs 
but audio professionals too, if  Rob Watts, Chord 
Electronics’ Digital Design Consultant, is correct. For 
years Watts has been bucking the conventional audio 
industry practice of  using relatively short – sometimes 
very short – digital filters in high oversampled DACs. 
As technology has allowed it, his filters have become 
longer and longer. And each time filter length is 
increased, he says, sound quality improves.
	 Watts’ long quest to achieve a sufficiently long 

filter that no further increase is of  subjective benefit 
reached its latest apotheosis with the announcement, 
at the London CamJam show in July, of  the Chord 
Electronics M Scaler (see Box-out), a digital in, digital 
out upsampler that for the first time features over 
one million filter taps, ie the linear-phase FIR (finite 
impulse response) interpolation filter employed 
has over one million coefficients: 1,015,808 to 
be precise. To put this number into perspective, 
most oversampling DACs use filters that are a few 
hundred taps (coefficients) in length at most. Even 
Dave, Chord’s best current standalone DAC, uses 
‘only’ 164,000 filter taps.
	 Understanding Watts’ relentless pursuit of  longer 
interpolation filters – each step of  which has opened 
a still wider gap between him and accepted industry 
practice – requires going back to grass roots: to 
Shannon’s sampling theory, and particularly to the 
‘sinc’ function.

Fig 1. Central portion of  the sinc(x) function

	 Sinc(x) is mathematical shorthand for the 
function sin(x)/x, which looks (over its central part) 
like Fig 1. The reason for the x-axis (horizontal 
axis) being labelled ‘sampling intervals’ will 
become apparent shortly. What Shannon showed 
in his famous paper was that any bandlimited 
continuous signal – that is, any analogue signal with 
a strict limit on its maximum frequency – can be 
exactly described as a sum of  time-spaced sinc(x) 
waveforms. 
	 Not only that, if  the signal is sampled, ie if  its 
amplitude is measured, at regular intervals, at a rate at 

HFC_issue51_Final.indd   16 21/08/2018   08:2116HIFICRITIC  JUL | AUG | SEP 2018

n  FEATURE

Tapping Into Better 
Digital Audio
KEITH HOWARD EXAMINES THE BACKGROUND AND PHILOSOPHY BEHIND ROB WATTS’ 
ULTRA-LONG FILTERS, FOUND IN CHORD ELECTRONICS DACS, ESPECIALLY THE M SCALER

It’s an interesting piece of historical coincidence 
that 1948 was both the year that Columbia 
Records announced the LP and the year 

in which Claude Shannon’s famous paper A 
Mathematical Theory of Communication [1] was 
published, describing the mathematical basis of 
signal sampling and thus digital audio. It is now 
acknowledged that Shannon wasn’t actually the 
first to visit this territory; others, including English 
mathematician Edmund Whittaker, had elucidated 
all or part of the theory earlier. But Shannon’s paper 
really launched the field of information theory and 
paved the way – awaiting the necessary technological 
advances – to the digitisation of all manner of 
continuous signals, not just audio waveforms.
	Few audiophiles knew of this area of mathematics 
or its potential application to audio signals until, 
starting in 1972, the BBC began to replace audio 
landlines to its transmitters with 13-bit Nicam PCM 
digital audio links running at 32kHz sampling rate 
with companding (compression for transmission and 
subsequent expanding on receipt). The first, from 
Broadcasting House to the Wrotham transmitter 
in North Kent, began operating on 14 September 
that year, and the network was then progressively 
expanded. Later in the 1970s the first digital recorders 
were developed of sufficient quality (arguably…), to 
be used by pioneering record labels such as Denon 
and Decca. Then, in 1982/3, the Compact Disc 
arrived – the first digital audio music carrier.
	Given that it’s 35 years since CD went on sale in 
Europe, you might suppose that most audiophiles 
would now have a firm grasp of the basics of 
sampling theory, but in truth it remains widely 
misunderstood. And not just by audio amateurs 
but audio professionals too, if Rob Watts, Chord 
Electronics’ Digital Design Consultant, is correct. For 
years Watts has been bucking the conventional audio 
industry practice of using relatively short – sometimes 
very short – digital filters in high oversampled DACs. 
As technology has allowed it, his filters have become 
longer and longer. And each time filter length is 
increased, he says, sound quality improves.
	Watts’ long quest to achieve a sufficiently long 

filter that no further increase is of subjective benefit 
reached its latest apotheosis with the announcement, 
at the London CamJam show in July, of the Chord 
Electronics M Scaler (see Box-out), a digital in, digital 
out upsampler that for the first time features over 
one million filter taps, ie the linear-phase FIR (finite 
impulse response) interpolation filter employed 
has over one million coefficients: 1,015,808 to 
be precise. To put this number into perspective, 
most oversampling DACs use filters that are a few 
hundred taps (coefficients) in length at most. Even 
Dave, Chord’s best current standalone DAC, uses 
‘only’ 164,000 filter taps.
	Understanding Watts’ relentless pursuit of longer 
interpolation filters – each step of which has opened 
a still wider gap between him and accepted industry 
practice – requires going back to grass roots: to 
Shannon’s sampling theory, and particularly to the 
‘sinc’ function.

Fig 1. Central portion of the sinc(x) function

	Sinc(x) is mathematical shorthand for the 
function sin(x)/x, which looks (over its central part) 
like Fig 1. The reason for the x-axis (horizontal 
axis) being labelled ‘sampling intervals’ will 
become apparent shortly. What Shannon showed 
in his famous paper was that any bandlimited 
continuous signal – that is, any analogue signal with 
a strict limit on its maximum frequency – can be 
exactly described as a sum of time-spaced sinc(x) 
waveforms. 
	Not only that, if the signal is sampled, ie if its 
amplitude is measured, at regular intervals, at a rate at 

HFC_issue51_Final.indd   1621/08/2018   08:21

16HIFICRITIC  JUL | AUG | SEP 2018

n  FEATURE

Tapping Into Better 
Digital Audio
KEITH HOWARD EXAMINES THE BACKGROUND AND PHILOSOPHY BEHIND ROB WATTS’ 
ULTRA-LONG FILTERS, FOUND IN CHORD ELECTRONICS DACS, ESPECIALLY THE M SCALER

It’s an interesting piece of historical coincidence 
that 1948 was both the year that Columbia 
Records announced the LP and the year 

in which Claude Shannon’s famous paper A 
Mathematical Theory of Communication [1] was 
published, describing the mathematical basis of 
signal sampling and thus digital audio. It is now 
acknowledged that Shannon wasn’t actually the 
first to visit this territory; others, including English 
mathematician Edmund Whittaker, had elucidated 
all or part of the theory earlier. But Shannon’s paper 
really launched the field of information theory and 
paved the way – awaiting the necessary technological 
advances – to the digitisation of all manner of 
continuous signals, not just audio waveforms.
	Few audiophiles knew of this area of mathematics 
or its potential application to audio signals until, 
starting in 1972, the BBC began to replace audio 
landlines to its transmitters with 13-bit Nicam PCM 
digital audio links running at 32kHz sampling rate 
with companding (compression for transmission and 
subsequent expanding on receipt). The first, from 
Broadcasting House to the Wrotham transmitter 
in North Kent, began operating on 14 September 
that year, and the network was then progressively 
expanded. Later in the 1970s the first digital recorders 
were developed of sufficient quality (arguably…), to 
be used by pioneering record labels such as Denon 
and Decca. Then, in 1982/3, the Compact Disc 
arrived – the first digital audio music carrier.
	Given that it’s 35 years since CD went on sale in 
Europe, you might suppose that most audiophiles 
would now have a firm grasp of the basics of 
sampling theory, but in truth it remains widely 
misunderstood. And not just by audio amateurs 
but audio professionals too, if Rob Watts, Chord 
Electronics’ Digital Design Consultant, is correct. For 
years Watts has been bucking the conventional audio 
industry practice of using relatively short – sometimes 
very short – digital filters in high oversampled DACs. 
As technology has allowed it, his filters have become 
longer and longer. And each time filter length is 
increased, he says, sound quality improves.
	Watts’ long quest to achieve a sufficiently long 

filter that no further increase is of subjective benefit 
reached its latest apotheosis with the announcement, 
at the London CamJam show in July, of the Chord 
Electronics M Scaler (see Box-out), a digital in, digital 
out upsampler that for the first time features over 
one million filter taps, ie the linear-phase FIR (finite 
impulse response) interpolation filter employed 
has over one million coefficients: 1,015,808 to 
be precise. To put this number into perspective, 
most oversampling DACs use filters that are a few 
hundred taps (coefficients) in length at most. Even 
Dave, Chord’s best current standalone DAC, uses 
‘only’ 164,000 filter taps.
	Understanding Watts’ relentless pursuit of longer 
interpolation filters – each step of which has opened 
a still wider gap between him and accepted industry 
practice – requires going back to grass roots: to 
Shannon’s sampling theory, and particularly to the 
‘sinc’ function.

Fig 1. Central portion of the sinc(x) function

	Sinc(x) is mathematical shorthand for the 
function sin(x)/x, which looks (over its central part) 
like Fig 1. The reason for the x-axis (horizontal 
axis) being labelled ‘sampling intervals’ will 
become apparent shortly. What Shannon showed 
in his famous paper was that any bandlimited 
continuous signal – that is, any analogue signal with 
a strict limit on its maximum frequency – can be 
exactly described as a sum of time-spaced sinc(x) 
waveforms. 
	Not only that, if the signal is sampled, ie if its 
amplitude is measured, at regular intervals, at a rate at 

HFC_issue51_Final.indd   1621/08/2018   08:21

16HIFICRITIC  JUL | AUG | SEP 2018

n  FEATURE

Tapping Into Better 
Digital Audio KEITH HOWARD EXAMINES THE BACKGROUND AND PHILOSOPHY BEHIND ROB WATTS’ 
ULTRA-LONG FILTERS, FOUND IN CHORD ELECTRONICS DACS, ESPECIALLY THE M SCALER

I
t’s an interesting piece of historical coincidence 
that 1948 was both the year that Columbia 
Records announced the LP and the year 

in which Claude Shannon’s famous paper A 
Mathematical Theory of Communication [1] was 
published, describing the mathematical basis of 
signal sampling and thus digital audio. It is now 
acknowledged that Shannon wasn’t actually the 
first to visit this territory; others, including English 
mathematician Edmund Whittaker, had elucidated 
all or part of the theory earlier. But Shannon’s paper 
really launched the field of information theory and 
paved the way – awaiting the necessary technological 
advances – to the digitisation of all manner of 
continuous signals, not just audio waveforms.
	Few audiophiles knew of this area of mathematics 
or its potential application to audio signals until, 
starting in 1972, the BBC began to replace audio 
landlines to its transmitters with 13-bit Nicam PCM 
digital audio links running at 32kHz sampling rate 
with companding (compression for transmission and 
subsequent expanding on receipt). The first, from 
Broadcasting House to the Wrotham transmitter 
in North Kent, began operating on 14 September 
that year, and the network was then progressively 
expanded. Later in the 1970s the first digital recorders 
were developed of sufficient quality (arguably…), to 
be used by pioneering record labels such as Denon 
and Decca. Then, in 1982/3, the Compact Disc 
arrived – the first digital audio music carrier.
	Given that it’s 35 years since CD went on sale in 
Europe, you might suppose that most audiophiles 
would now have a firm grasp of the basics of 
sampling theory, but in truth it remains widely 
misunderstood. And not just by audio amateurs 
but audio professionals too, if Rob Watts, Chord 
Electronics’ Digital Design Consultant, is correct. For 
years Watts has been bucking the conventional audio 
industry practice of using relatively short – sometimes 
very short – digital filters in high oversampled DACs. 
As technology has allowed it, his filters have become 
longer and longer. And each time filter length is 
increased, he says, sound quality improves.
	Watts’ long quest to achieve a sufficiently long 

filter that no further increase is of subjective benefit 
reached its latest apotheosis with the announcement, 
at the London CamJam show in July, of the Chord 
Electronics M Scaler (see Box-out), a digital in, digital 
out upsampler that for the first time features over 
one million filter taps, ie the linear-phase FIR (finite 
impulse response) interpolation filter employed 
has over one million coefficients: 1,015,808 to 
be precise. To put this number into perspective, 
most oversampling DACs use filters that are a few 
hundred taps (coefficients) in length at most. Even 
Dave, Chord’s best current standalone DAC, uses 
‘only’ 164,000 filter taps.
	Understanding Watts’ relentless pursuit of longer 
interpolation filters – each step of which has opened 
a still wider gap between him and accepted industry 
practice – requires going back to grass roots: to 
Shannon’s sampling theory, and particularly to the 
‘sinc’ function.

Fig 1. Central portion of the sinc(x) function

	Sinc(x) is mathematical shorthand for the 
function sin(x)/x, which looks (over its central part) 
like Fig 1. The reason for the x-axis (horizontal 
axis) being labelled ‘sampling intervals’ will 
become apparent shortly. What Shannon showed 
in his famous paper was that any bandlimited 
continuous signal – that is, any analogue signal with 
a strict limit on its maximum frequency – can be 
exactly described as a sum of time-spaced sinc(x) 
waveforms. 
	Not only that, if the signal is sampled, ie if its 
amplitude is measured, at regular intervals, at a rate at 

HFC_issue51_Final.indd   1621/08/2018   08:21

16HIFICRITIC  JUL | AUG | SEP 2018

n  FEATURE

Tapping Into Better 
Digital Audio KEITH HOWARD EXAMINES THE BACKGROUND AND PHILOSOPHY BEHIND ROB WATTS’ 
ULTRA-LONG FILTERS, FOUND IN CHORD ELECTRONICS DACS, ESPECIALLY THE M SCALER

I
t’s an interesting piece of historical coincidence 
that 1948 was both the year that Columbia 
Records announced the LP and the year 

in which Claude Shannon’s famous paper A 
Mathematical Theory of Communication [1] was 
published, describing the mathematical basis of 
signal sampling and thus digital audio. It is now 
acknowledged that Shannon wasn’t actually the 
first to visit this territory; others, including English 
mathematician Edmund Whittaker, had elucidated 
all or part of the theory earlier. But Shannon’s paper 
really launched the field of information theory and 
paved the way – awaiting the necessary technological 
advances – to the digitisation of all manner of 
continuous signals, not just audio waveforms.
	Few audiophiles knew of this area of mathematics 
or its potential application to audio signals until, 
starting in 1972, the BBC began to replace audio 
landlines to its transmitters with 13-bit Nicam PCM 
digital audio links running at 32kHz sampling rate 
with companding (compression for transmission and 
subsequent expanding on receipt). The first, from 
Broadcasting House to the Wrotham transmitter 
in North Kent, began operating on 14 September 
that year, and the network was then progressively 
expanded. Later in the 1970s the first digital recorders 
were developed of sufficient quality (arguably…), to 
be used by pioneering record labels such as Denon 
and Decca. Then, in 1982/3, the Compact Disc 
arrived – the first digital audio music carrier.
	Given that it’s 35 years since CD went on sale in 
Europe, you might suppose that most audiophiles 
would now have a firm grasp of the basics of 
sampling theory, but in truth it remains widely 
misunderstood. And not just by audio amateurs 
but audio professionals too, if Rob Watts, Chord 
Electronics’ Digital Design Consultant, is correct. For 
years Watts has been bucking the conventional audio 
industry practice of using relatively short – sometimes 
very short – digital filters in high oversampled DACs. 
As technology has allowed it, his filters have become 
longer and longer. And each time filter length is 
increased, he says, sound quality improves.
	Watts’ long quest to achieve a sufficiently long 

filter that no further increase is of subjective benefit 
reached its latest apotheosis with the announcement, 
at the London CamJam show in July, of the Chord 
Electronics M Scaler (see Box-out), a digital in, digital 
out upsampler that for the first time features over 
one million filter taps, ie the linear-phase FIR (finite 
impulse response) interpolation filter employed 
has over one million coefficients: 1,015,808 to 
be precise. To put this number into perspective, 
most oversampling DACs use filters that are a few 
hundred taps (coefficients) in length at most. Even 
Dave, Chord’s best current standalone DAC, uses 
‘only’ 164,000 filter taps.
	Understanding Watts’ relentless pursuit of longer 
interpolation filters – each step of which has opened 
a still wider gap between him and accepted industry 
practice – requires going back to grass roots: to 
Shannon’s sampling theory, and particularly to the 
‘sinc’ function.

Fig 1. Central portion of the sinc(x) function

	Sinc(x) is mathematical shorthand for the 
function sin(x)/x, which looks (over its central part) 
like Fig 1. The reason for the x-axis (horizontal 
axis) being labelled ‘sampling intervals’ will 
become apparent shortly. What Shannon showed 
in his famous paper was that any bandlimited 
continuous signal – that is, any analogue signal with 
a strict limit on its maximum frequency – can be 
exactly described as a sum of time-spaced sinc(x) 
waveforms. 
	Not only that, if the signal is sampled, ie if its 
amplitude is measured, at regular intervals, at a rate at 

HFC_issue51_Final.indd   1621/08/2018   08:21

16HIFICRITIC  JUL | AUG | SEP 2018

n  FEATURE

Tapping Into Better 
Digital Audio KEITH HOWARD EXAMINES THE BACKGROUND AND PHILOSOPHY BEHIND ROB WATTS’ 
ULTRA-LONG FILTERS, FOUND IN CHORD ELECTRONICS DACS, ESPECIALLY THE M SCALER

I
t’s an interesting piece of historical coincidence 
that 1948 was both the year that Columbia 
Records announced the LP and the year 

in which Claude Shannon’s famous paper A 
Mathematical Theory of Communication [1] was 
published, describing the mathematical basis of 
signal sampling and thus digital audio. It is now 
acknowledged that Shannon wasn’t actually the 
first to visit this territory; others, including English 
mathematician Edmund Whittaker, had elucidated 
all or part of the theory earlier. But Shannon’s paper 
really launched the field of information theory and 
paved the way – awaiting the necessary technological 
advances – to the digitisation of all manner of 
continuous signals, not just audio waveforms.
	Few audiophiles knew of this area of mathematics 
or its potential application to audio signals until, 
starting in 1972, the BBC began to replace audio 
landlines to its transmitters with 13-bit Nicam PCM 
digital audio links running at 32kHz sampling rate 
with companding (compression for transmission and 
subsequent expanding on receipt). The first, from 
Broadcasting House to the Wrotham transmitter 
in North Kent, began operating on 14 September 
that year, and the network was then progressively 
expanded. Later in the 1970s the first digital recorders 
were developed of sufficient quality (arguably…), to 
be used by pioneering record labels such as Denon 
and Decca. Then, in 1982/3, the Compact Disc 
arrived – the first digital audio music carrier.
	Given that it’s 35 years since CD went on sale in 
Europe, you might suppose that most audiophiles 
would now have a firm grasp of the basics of 
sampling theory, but in truth it remains widely 
misunderstood. And not just by audio amateurs 
but audio professionals too, if Rob Watts, Chord 
Electronics’ Digital Design Consultant, is correct. For 
years Watts has been bucking the conventional audio 
industry practice of using relatively short – sometimes 
very short – digital filters in high oversampled DACs. 
As technology has allowed it, his filters have become 
longer and longer. And each time filter length is 
increased, he says, sound quality improves.
	Watts’ long quest to achieve a sufficiently long 

filter that no further increase is of subjective benefit 
reached its latest apotheosis with the announcement, 
at the London CamJam show in July, of the Chord 
Electronics M Scaler (see Box-out), a digital in, digital 
out upsampler that for the first time features over 
one million filter taps, ie the linear-phase FIR (finite 
impulse response) interpolation filter employed 
has over one million coefficients: 1,015,808 to 
be precise. To put this number into perspective, 
most oversampling DACs use filters that are a few 
hundred taps (coefficients) in length at most. Even 
Dave, Chord’s best current standalone DAC, uses 
‘only’ 164,000 filter taps.
	Understanding Watts’ relentless pursuit of longer 
interpolation filters – each step of which has opened 
a still wider gap between him and accepted industry 
practice – requires going back to grass roots: to 
Shannon’s sampling theory, and particularly to the 
‘sinc’ function.

Fig 1. Central portion of the sinc(x) function

	Sinc(x) is mathematical shorthand for the 
function sin(x)/x, which looks (over its central part) 
like Fig 1. The reason for the x-axis (horizontal 
axis) being labelled ‘sampling intervals’ will 
become apparent shortly. What Shannon showed 
in his famous paper was that any bandlimited 
continuous signal – that is, any analogue signal with 
a strict limit on its maximum frequency – can be 
exactly described as a sum of time-spaced sinc(x) 
waveforms. 
	Not only that, if the signal is sampled, ie if its 
amplitude is measured, at regular intervals, at a rate at 

HFC_issue51_Final.indd   1621/08/2018   08:21

16HIFICRITIC  JUL | AUG | SEP 2018

n  FEATURE

Tapping Into Better 
Digital Audio KEITH HOWARD EXAMINES THE BACKGROUND AND PHILOSOPHY BEHIND ROB WATTS’ 
ULTRA-LONG FILTERS, FOUND IN CHORD ELECTRONICS DACS, ESPECIALLY THE M SCALER

I
t’s an interesting piece of historical coincidence 
that 1948 was both the year that Columbia 
Records announced the LP and the year 

in which Claude Shannon’s famous paper A 
Mathematical Theory of Communication [1] was 
published, describing the mathematical basis of 
signal sampling and thus digital audio. It is now 
acknowledged that Shannon wasn’t actually the 
first to visit this territory; others, including English 
mathematician Edmund Whittaker, had elucidated 
all or part of the theory earlier. But Shannon’s paper 
really launched the field of information theory and 
paved the way – awaiting the necessary technological 
advances – to the digitisation of all manner of 
continuous signals, not just audio waveforms.
	Few audiophiles knew of this area of mathematics 
or its potential application to audio signals until, 
starting in 1972, the BBC began to replace audio 
landlines to its transmitters with 13-bit Nicam PCM 
digital audio links running at 32kHz sampling rate 
with companding (compression for transmission and 
subsequent expanding on receipt). The first, from 
Broadcasting House to the Wrotham transmitter 
in North Kent, began operating on 14 September 
that year, and the network was then progressively 
expanded. Later in the 1970s the first digital recorders 
were developed of sufficient quality (arguably…), to 
be used by pioneering record labels such as Denon 
and Decca. Then, in 1982/3, the Compact Disc 
arrived – the first digital audio music carrier.
	Given that it’s 35 years since CD went on sale in 
Europe, you might suppose that most audiophiles 
would now have a firm grasp of the basics of 
sampling theory, but in truth it remains widely 
misunderstood. And not just by audio amateurs 
but audio professionals too, if Rob Watts, Chord 
Electronics’ Digital Design Consultant, is correct. For 
years Watts has been bucking the conventional audio 
industry practice of using relatively short – sometimes 
very short – digital filters in high oversampled DACs. 
As technology has allowed it, his filters have become 
longer and longer. And each time filter length is 
increased, he says, sound quality improves.
	Watts’ long quest to achieve a sufficiently long 

filter that no further increase is of subjective benefit 
reached its latest apotheosis with the announcement, 
at the London CamJam show in July, of the Chord 
Electronics M Scaler (see Box-out), a digital in, digital 
out upsampler that for the first time features over 
one million filter taps, ie the linear-phase FIR (finite 
impulse response) interpolation filter employed 
has over one million coefficients: 1,015,808 to 
be precise. To put this number into perspective, 
most oversampling DACs use filters that are a few 
hundred taps (coefficients) in length at most. Even 
Dave, Chord’s best current standalone DAC, uses 
‘only’ 164,000 filter taps.
	Understanding Watts’ relentless pursuit of longer 
interpolation filters – each step of which has opened 
a still wider gap between him and accepted industry 
practice – requires going back to grass roots: to 
Shannon’s sampling theory, and particularly to the 
‘sinc’ function.

Fig 1. Central portion of the sinc(x) function

	Sinc(x) is mathematical shorthand for the 
function sin(x)/x, which looks (over its central part) 
like Fig 1. The reason for the x-axis (horizontal 
axis) being labelled ‘sampling intervals’ will 
become apparent shortly. What Shannon showed 
in his famous paper was that any bandlimited 
continuous signal – that is, any analogue signal with 
a strict limit on its maximum frequency – can be 
exactly described as a sum of time-spaced sinc(x) 
waveforms. 
	Not only that, if the signal is sampled, ie if its 
amplitude is measured, at regular intervals, at a rate at 
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It’s an interesting piece of  historical coincidence 
that 1948 was both the year that Columbia 
Records announced the LP and the year 

in which Claude Shannon’s famous paper A 
Mathematical Theory of  Communication [1] was 
published, describing the mathematical basis of  
signal sampling and thus digital audio. It is now 
acknowledged that Shannon wasn’t actually the 
first to visit this territory; others, including English 
mathematician Edmund Whittaker, had elucidated 
all or part of  the theory earlier. But Shannon’s paper 
really launched the field of  information theory and 
paved the way – awaiting the necessary technological 
advances – to the digitisation of  all manner of  
continuous signals, not just audio waveforms.
	 Few audiophiles knew of  this area of  mathematics 
or its potential application to audio signals until, 
starting in 1972, the BBC began to replace audio 
landlines to its transmitters with 13-bit Nicam PCM 
digital audio links running at 32kHz sampling rate 
with companding (compression for transmission and 
subsequent expanding on receipt). The first, from 
Broadcasting House to the Wrotham transmitter 
in North Kent, began operating on 14 September 
that year, and the network was then progressively 
expanded. Later in the 1970s the first digital recorders 
were developed of  sufficient quality (arguably…), to 
be used by pioneering record labels such as Denon 
and Decca. Then, in 1982/3, the Compact Disc 
arrived – the first digital audio music carrier.
	 Given that it’s 35 years since CD went on sale in 
Europe, you might suppose that most audiophiles 
would now have a firm grasp of  the basics of  
sampling theory, but in truth it remains widely 
misunderstood. And not just by audio amateurs 
but audio professionals too, if  Rob Watts, Chord 
Electronics’ Digital Design Consultant, is correct. For 
years Watts has been bucking the conventional audio 
industry practice of  using relatively short – sometimes 
very short – digital filters in high oversampled DACs. 
As technology has allowed it, his filters have become 
longer and longer. And each time filter length is 
increased, he says, sound quality improves.
	 Watts’ long quest to achieve a sufficiently long 

filter that no further increase is of  subjective benefit 
reached its latest apotheosis with the announcement, 
at the London CamJam show in July, of  the Chord 
Electronics M Scaler (see Box-out), a digital in, digital 
out upsampler that for the first time features over 
one million filter taps, ie the linear-phase FIR (finite 
impulse response) interpolation filter employed 
has over one million coefficients: 1,015,808 to 
be precise. To put this number into perspective, 
most oversampling DACs use filters that are a few 
hundred taps (coefficients) in length at most. Even 
Dave, Chord’s best current standalone DAC, uses 
‘only’ 164,000 filter taps.
	 Understanding Watts’ relentless pursuit of  longer 
interpolation filters – each step of  which has opened 
a still wider gap between him and accepted industry 
practice – requires going back to grass roots: to 
Shannon’s sampling theory, and particularly to the 
‘sinc’ function.

Fig 1. Central portion of  the sinc(x) function

	 Sinc(x) is mathematical shorthand for the 
function sin(x)/x, which looks (over its central part) 
like Fig 1. The reason for the x-axis (horizontal 
axis) being labelled ‘sampling intervals’ will 
become apparent shortly. What Shannon showed 
in his famous paper was that any bandlimited 
continuous signal – that is, any analogue signal with 
a strict limit on its maximum frequency – can be 
exactly described as a sum of  time-spaced sinc(x) 
waveforms. 
	 Not only that, if  the signal is sampled, ie if  its 
amplitude is measured, at regular intervals, at a rate at 
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least double that of  the highest signal frequency, each 
sample amplitude represents the amplitude of  the 
associated sinc(x) waveform centred on that sampling 
point. At all other sampling points the value of  that 
particular sinc(x) function is zero, just as the value of  
the sinc(x) functions centred on each other sampling 
point are zero here. So sampling the waveform as 
described extracts all the information necessary to 
reconstruct it, and to do so with complete accuracy.
	 This is the analogue-to-digital conversion process, 
and it’s entirely practicable. All we have to add to 
make it realisable in practice is quantisation of  the 
amplitude measurement, so that each sample value 
can be represented by a number of  finite length. 
	 By contrast, the waveform reconstruction 
process – digital-to-analogue conversion – is not 
so simple. In an ideal world it would be achieved 
by generating an impulse of  appropriate amplitude 
for each sampling point and passing the train of  
regularly spaced impulses through an ideal low-pass 
filter with its passband upper edge set to half  the 
sampling rate. The impulse response of  such a filter 
is the sinc function, so each impulse would generate 
a sinc waveform of  the necessary amplitude, and 
the train of  sinc functions would sum to recreate 
the original waveform.

wave shape depends not just on the value of  nearby 
samples but, ultimately, on the pattern of  samples 
throughout the sampled signal.
	 In practice this theoretical DAC scheme is 
unrealisable, for two reasons. First, the ideal low-pass 
filter, with infinite roll-off  rate at the passband edge, 
exists only in abstractions – in the real world, where 
filters always have finite rates of  roll-off, it can only 
be approximated. Second, even if  the perfect low-pass 
filter were not a dream, this approach would provide 
inadequate signal-to-noise ratio because of  the tiny 
amount of  energy contained in each impulse.
	 In real-world DACs two compromises have to 
be made. First, the amplitude of  each sample is 
not represented as an impulse but as a step which 
is maintained for an entire sampling period. This 
‘sample and hold’ process obviates the signal-
to-noise issue but results in a non-flat frequency 
response that rolls off  gently towards the Nyquist 
frequency (half  the sample rate). The fix is trivial: 
the roll-off  can be, and routinely is, corrected by 
equalisation. The second compromise I’ve already 
alluded to. Because an ideal low-pass filter is 
unachievable, one with a slower rate of  roll-off  must 
be substituted – and then it won’t provide sinc(x) 
impulse response.
	 The way this last issue is habitually addressed is 
simply to ignore it. The analogue output filter (or in 
oversampled systems, the digital interpolation filter) 
is considered adequate if  it achieves sufficiently good 
frequency domain performance, ie sufficiently flat 
passband response and adequate attenuation of  the 
image frequencies which appear above the Nyquist 
frequency. Fig 3 shows the frequency response of  
an example interpolation filter, designed (using the 
well-known Parks-McClellan equiripple method) for 
4× oversampling of  44.1kHz data with the following 
specifications:

	 passband upper frequency	20kHz
	 passband ripple			  0.01dB
	 stopband lower frequency	24kHz
	 stopband attenuation		  100dB

Fig 2. How the summing of  sinc(x) functions – one per signal sample – 
builds the waveform between sampling points

	 This is illustrated in Fig 2, which shows six 
successive sinc functions of  different amplitude 
and their sum (the black trace). Each sinc function 
contributes nothing to the summed signal amplitude 
at other sampling points, but does contribute to the 
waveform between the sampling points. It’s a common 
misunderstanding of  sampling to suppose that the 
waveform between sampling points is unknowable 
but that is not true – provided that the input signal 
is bandlimited and sampled at least twice as fast 
as its highest component frequency, as required 
by the Shannon sampling process. In that case 
the waveform between sampling points can be 
reconstructed unambiguously. Importantly, the Fig 3. Frequency response of  an example 4× interpolation filter
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least double that of  the highest signal frequency, each 
sample amplitude represents the amplitude of  the 
associated sinc(x) waveform centred on that sampling 
point. At all other sampling points the value of  that 
particular sinc(x) function is zero, just as the value of  
the sinc(x) functions centred on each other sampling 
point are zero here. So sampling the waveform as 
described extracts all the information necessary to 
reconstruct it, and to do so with complete accuracy.
	 This is the analogue-to-digital conversion process, 
and it’s entirely practicable. All we have to add to 
make it realisable in practice is quantisation of  the 
amplitude measurement, so that each sample value 
can be represented by a number of  finite length. 
	 By contrast, the waveform reconstruction 
process – digital-to-analogue conversion – is not 
so simple. In an ideal world it would be achieved 
by generating an impulse of  appropriate amplitude 
for each sampling point and passing the train of  
regularly spaced impulses through an ideal low-pass 
filter with its passband upper edge set to half  the 
sampling rate. The impulse response of  such a filter 
is the sinc function, so each impulse would generate 
a sinc waveform of  the necessary amplitude, and 
the train of  sinc functions would sum to recreate 
the original waveform.

wave shape depends not just on the value of  nearby 
samples but, ultimately, on the pattern of  samples 
throughout the sampled signal.
	 In practice this theoretical DAC scheme is 
unrealisable, for two reasons. First, the ideal low-pass 
filter, with infinite roll-off  rate at the passband edge, 
exists only in abstractions – in the real world, where 
filters always have finite rates of  roll-off, it can only 
be approximated. Second, even if  the perfect low-pass 
filter were not a dream, this approach would provide 
inadequate signal-to-noise ratio because of  the tiny 
amount of  energy contained in each impulse.
	 In real-world DACs two compromises have to 
be made. First, the amplitude of  each sample is 
not represented as an impulse but as a step which 
is maintained for an entire sampling period. This 
‘sample and hold’ process obviates the signal-
to-noise issue but results in a non-flat frequency 
response that rolls off  gently towards the Nyquist 
frequency (half  the sample rate). The fix is trivial: 
the roll-off  can be, and routinely is, corrected by 
equalisation. The second compromise I’ve already 
alluded to. Because an ideal low-pass filter is 
unachievable, one with a slower rate of  roll-off  must 
be substituted – and then it won’t provide sinc(x) 
impulse response.
	 The way this last issue is habitually addressed is 
simply to ignore it. The analogue output filter (or in 
oversampled systems, the digital interpolation filter) 
is considered adequate if  it achieves sufficiently good 
frequency domain performance, ie sufficiently flat 
passband response and adequate attenuation of  the 
image frequencies which appear above the Nyquist 
frequency. Fig 3 shows the frequency response of  
an example interpolation filter, designed (using the 
well-known Parks-McClellan equiripple method) for 
4× oversampling of  44.1kHz data with the following 
specifications:

	 passband upper frequency	20kHz
	 passband ripple			  0.01dB
	 stopband lower frequency	24kHz
	 stopband attenuation		  100dB

Fig 2. How the summing of  sinc(x) functions – one per signal sample – 
builds the waveform between sampling points

	 This is illustrated in Fig 2, which shows six 
successive sinc functions of  different amplitude 
and their sum (the black trace). Each sinc function 
contributes nothing to the summed signal amplitude 
at other sampling points, but does contribute to the 
waveform between the sampling points. It’s a common 
misunderstanding of  sampling to suppose that the 
waveform between sampling points is unknowable 
but that is not true – provided that the input signal 
is bandlimited and sampled at least twice as fast 
as its highest component frequency, as required 
by the Shannon sampling process. In that case 
the waveform between sampling points can be 
reconstructed unambiguously. Importantly, the Fig 3. Frequency response of  an example 4× interpolation filter
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least double that of the highest signal frequency, each 
sample amplitude represents the amplitude of the 
associated sinc(x) waveform centred on that sampling 
point. At all other sampling points the value of that 
particular sinc(x) function is zero, just as the value of 
the sinc(x) functions centred on each other sampling 
point are zero here. So sampling the waveform as 
described extracts all the information necessary to 
reconstruct it, and to do so with complete accuracy.
	This is the analogue-to-digital conversion process, 
and it’s entirely practicable. All we have to add to 
make it realisable in practice is quantisation of the 
amplitude measurement, so that each sample value 
can be represented by a number of finite length. 
	By contrast, the waveform reconstruction 
process – digital-to-analogue conversion – is not 
so simple. In an ideal world it would be achieved 
by generating an impulse of appropriate amplitude 
for each sampling point and passing the train of 
regularly spaced impulses through an ideal low-pass 
filter with its passband upper edge set to half the 
sampling rate. The impulse response of such a filter 
is the sinc function, so each impulse would generate 
a sinc waveform of the necessary amplitude, and 
the train of sinc functions would sum to recreate 
the original waveform.

wave shape depends not just on the value of nearby 
samples but, ultimately, on the pattern of samples 
throughout the sampled signal.
	In practice this theoretical DAC scheme is 
unrealisable, for two reasons. First, the ideal low-pass 
filter, with infinite roll-off rate at the passband edge, 
exists only in abstractions – in the real world, where 
filters always have finite rates of roll-off, it can only 
be approximated. Second, even if the perfect low-pass 
filter were not a dream, this approach would provide 
inadequate signal-to-noise ratio because of the tiny 
amount of energy contained in each impulse.
	In real-world DACs two compromises have to 
be made. First, the amplitude of each sample is 
not represented as an impulse but as a step which 
is maintained for an entire sampling period. This 
‘sample and hold’ process obviates the signal-
to-noise issue but results in a non-flat frequency 
response that rolls off gently towards the Nyquist 
frequency (half the sample rate). The fix is trivial: 
the roll-off can be, and routinely is, corrected by 
equalisation. The second compromise I’ve already 
alluded to. Because an ideal low-pass filter is 
unachievable, one with a slower rate of roll-off must 
be substituted – and then it won’t provide sinc(x) 
impulse response.
	The way this last issue is habitually addressed is 
simply to ignore it. The analogue output filter (or in 
oversampled systems, the digital interpolation filter) 
is considered adequate if it achieves sufficiently good 
frequency domain performance, ie sufficiently flat 
passband response and adequate attenuation of the 
image frequencies which appear above the Nyquist 
frequency. Fig 3 shows the frequency response of 
an example interpolation filter, designed (using the 
well-known Parks-McClellan equiripple method) for 
4× oversampling of 44.1kHz data with the following 
specifications:

	passband upper frequency	20kHz
	passband ripple			0.01dB
	stopband lower frequency	24kHz
	stopband attenuation		100dB

Fig 2. How the summing of sinc(x) functions – one per signal sample – 
builds the waveform between sampling points

	This is illustrated in Fig 2, which shows six 
successive sinc functions of different amplitude 
and their sum (the black trace). Each sinc function 
contributes nothing to the summed signal amplitude 
at other sampling points, but does contribute to the 
waveform between the sampling points. It’s a common 
misunderstanding of sampling to suppose that the 
waveform between sampling points is unknowable 
but that is not true – provided that the input signal 
is bandlimited and sampled at least twice as fast 
as its highest component frequency, as required 
by the Shannon sampling process. In that case 
the waveform between sampling points can be 
reconstructed unambiguously. Importantly, the Fig 3. Frequency response of an example 4× interpolation filter
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least double that of the highest signal frequency, each 
sample amplitude represents the amplitude of the 
associated sinc(x) waveform centred on that sampling 
point. At all other sampling points the value of that 
particular sinc(x) function is zero, just as the value of 
the sinc(x) functions centred on each other sampling 
point are zero here. So sampling the waveform as 
described extracts all the information necessary to 
reconstruct it, and to do so with complete accuracy.
	This is the analogue-to-digital conversion process, 
and it’s entirely practicable. All we have to add to 
make it realisable in practice is quantisation of the 
amplitude measurement, so that each sample value 
can be represented by a number of finite length. 
	By contrast, the waveform reconstruction 
process – digital-to-analogue conversion – is not 
so simple. In an ideal world it would be achieved 
by generating an impulse of appropriate amplitude 
for each sampling point and passing the train of 
regularly spaced impulses through an ideal low-pass 
filter with its passband upper edge set to half the 
sampling rate. The impulse response of such a filter 
is the sinc function, so each impulse would generate 
a sinc waveform of the necessary amplitude, and 
the train of sinc functions would sum to recreate 
the original waveform.

wave shape depends not just on the value of nearby 
samples but, ultimately, on the pattern of samples 
throughout the sampled signal.
	In practice this theoretical DAC scheme is 
unrealisable, for two reasons. First, the ideal low-pass 
filter, with infinite roll-off rate at the passband edge, 
exists only in abstractions – in the real world, where 
filters always have finite rates of roll-off, it can only 
be approximated. Second, even if the perfect low-pass 
filter were not a dream, this approach would provide 
inadequate signal-to-noise ratio because of the tiny 
amount of energy contained in each impulse.
	In real-world DACs two compromises have to 
be made. First, the amplitude of each sample is 
not represented as an impulse but as a step which 
is maintained for an entire sampling period. This 
‘sample and hold’ process obviates the signal-
to-noise issue but results in a non-flat frequency 
response that rolls off gently towards the Nyquist 
frequency (half the sample rate). The fix is trivial: 
the roll-off can be, and routinely is, corrected by 
equalisation. The second compromise I’ve already 
alluded to. Because an ideal low-pass filter is 
unachievable, one with a slower rate of roll-off must 
be substituted – and then it won’t provide sinc(x) 
impulse response.
	The way this last issue is habitually addressed is 
simply to ignore it. The analogue output filter (or in 
oversampled systems, the digital interpolation filter) 
is considered adequate if it achieves sufficiently good 
frequency domain performance, ie sufficiently flat 
passband response and adequate attenuation of the 
image frequencies which appear above the Nyquist 
frequency. Fig 3 shows the frequency response of 
an example interpolation filter, designed (using the 
well-known Parks-McClellan equiripple method) for 
4× oversampling of 44.1kHz data with the following 
specifications:

	passband upper frequency	20kHz
	passband ripple			0.01dB
	stopband lower frequency	24kHz
	stopband attenuation		100dB

Fig 2. How the summing of sinc(x) functions – one per signal sample – 
builds the waveform between sampling points

	This is illustrated in Fig 2, which shows six 
successive sinc functions of different amplitude 
and their sum (the black trace). Each sinc function 
contributes nothing to the summed signal amplitude 
at other sampling points, but does contribute to the 
waveform between the sampling points. It’s a common 
misunderstanding of sampling to suppose that the 
waveform between sampling points is unknowable 
but that is not true – provided that the input signal 
is bandlimited and sampled at least twice as fast 
as its highest component frequency, as required 
by the Shannon sampling process. In that case 
the waveform between sampling points can be 
reconstructed unambiguously. Importantly, the Fig 3. Frequency response of an example 4× interpolation filter
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least double that of the highest signal frequency, each 
sample amplitude represents the amplitude of the 
associated sinc(x) waveform centred on that sampling 
point. At all other sampling points the value of that 
particular sinc(x) function is zero, just as the value of 
the sinc(x) functions centred on each other sampling 
point are zero here. So sampling the waveform as 
described extracts all the information necessary to 
reconstruct it, and to do so with complete accuracy.
	This is the analogue-to-digital conversion process, 
and it’s entirely practicable. All we have to add to 
make it realisable in practice is quantisation of the 
amplitude measurement, so that each sample value 
can be represented by a number of finite length. 
	By contrast, the waveform reconstruction 
process – digital-to-analogue conversion – is not 
so simple. In an ideal world it would be achieved 
by generating an impulse of appropriate amplitude 
for each sampling point and passing the train of 
regularly spaced impulses through an ideal low-pass 
filter with its passband upper edge set to half the 
sampling rate. The impulse response of such a filter 
is the sinc function, so each impulse would generate 
a sinc waveform of the necessary amplitude, and 
the train of sinc functions would sum to recreate 
the original waveform.

wave shape depends not just on the value of nearby 
samples but, ultimately, on the pattern of samples 
throughout the sampled signal.
	In practice this theoretical DAC scheme is 
unrealisable, for two reasons. First, the ideal low-pass 
filter, with infinite roll-off rate at the passband edge, 
exists only in abstractions – in the real world, where 
filters always have finite rates of roll-off, it can only 
be approximated. Second, even if the perfect low-pass 
filter were not a dream, this approach would provide 
inadequate signal-to-noise ratio because of the tiny 
amount of energy contained in each impulse.
	In real-world DACs two compromises have to 
be made. First, the amplitude of each sample is 
not represented as an impulse but as a step which 
is maintained for an entire sampling period. This 
‘sample and hold’ process obviates the signal-
to-noise issue but results in a non-flat frequency 
response that rolls off gently towards the Nyquist 
frequency (half the sample rate). The fix is trivial: 
the roll-off can be, and routinely is, corrected by 
equalisation. The second compromise I’ve already 
alluded to. Because an ideal low-pass filter is 
unachievable, one with a slower rate of roll-off must 
be substituted – and then it won’t provide sinc(x) 
impulse response.
	The way this last issue is habitually addressed is 
simply to ignore it. The analogue output filter (or in 
oversampled systems, the digital interpolation filter) 
is considered adequate if it achieves sufficiently good 
frequency domain performance, ie sufficiently flat 
passband response and adequate attenuation of the 
image frequencies which appear above the Nyquist 
frequency. Fig 3 shows the frequency response of 
an example interpolation filter, designed (using the 
well-known Parks-McClellan equiripple method) for 
4× oversampling of 44.1kHz data with the following 
specifications:

	passband upper frequency	20kHz
	passband ripple			0.01dB
	stopband lower frequency	24kHz
	stopband attenuation		100dB

Fig 2. How the summing of sinc(x) functions – one per signal sample – 
builds the waveform between sampling points

	This is illustrated in Fig 2, which shows six 
successive sinc functions of different amplitude 
and their sum (the black trace). Each sinc function 
contributes nothing to the summed signal amplitude 
at other sampling points, but does contribute to the 
waveform between the sampling points. It’s a common 
misunderstanding of sampling to suppose that the 
waveform between sampling points is unknowable 
but that is not true – provided that the input signal 
is bandlimited and sampled at least twice as fast 
as its highest component frequency, as required 
by the Shannon sampling process. In that case 
the waveform between sampling points can be 
reconstructed unambiguously. Importantly, the Fig 3. Frequency response of an example 4× interpolation filter
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least double that of the highest signal frequency, each 
sample amplitude represents the amplitude of the 
associated sinc(x) waveform centred on that sampling 
point. At all other sampling points the value of that 
particular sinc(x) function is zero, just as the value of 
the sinc(x) functions centred on each other sampling 
point are zero here. So sampling the waveform as 
described extracts all the information necessary to 
reconstruct it, and to do so with complete accuracy.
	This is the analogue-to-digital conversion process, 
and it’s entirely practicable. All we have to add to 
make it realisable in practice is quantisation of the 
amplitude measurement, so that each sample value 
can be represented by a number of finite length. 
	By contrast, the waveform reconstruction 
process – digital-to-analogue conversion – is not 
so simple. In an ideal world it would be achieved 
by generating an impulse of appropriate amplitude 
for each sampling point and passing the train of 
regularly spaced impulses through an ideal low-pass 
filter with its passband upper edge set to half the 
sampling rate. The impulse response of such a filter 
is the sinc function, so each impulse would generate 
a sinc waveform of the necessary amplitude, and 
the train of sinc functions would sum to recreate 
the original waveform.

wave shape depends not just on the value of nearby 
samples but, ultimately, on the pattern of samples 
throughout the sampled signal.
	In practice this theoretical DAC scheme is 
unrealisable, for two reasons. First, the ideal low-pass 
filter, with infinite roll-off rate at the passband edge, 
exists only in abstractions – in the real world, where 
filters always have finite rates of roll-off, it can only 
be approximated. Second, even if the perfect low-pass 
filter were not a dream, this approach would provide 
inadequate signal-to-noise ratio because of the tiny 
amount of energy contained in each impulse.
	In real-world DACs two compromises have to 
be made. First, the amplitude of each sample is 
not represented as an impulse but as a step which 
is maintained for an entire sampling period. This 
‘sample and hold’ process obviates the signal-
to-noise issue but results in a non-flat frequency 
response that rolls off gently towards the Nyquist 
frequency (half the sample rate). The fix is trivial: 
the roll-off can be, and routinely is, corrected by 
equalisation. The second compromise I’ve already 
alluded to. Because an ideal low-pass filter is 
unachievable, one with a slower rate of roll-off must 
be substituted – and then it won’t provide sinc(x) 
impulse response.
	The way this last issue is habitually addressed is 
simply to ignore it. The analogue output filter (or in 
oversampled systems, the digital interpolation filter) 
is considered adequate if it achieves sufficiently good 
frequency domain performance, ie sufficiently flat 
passband response and adequate attenuation of the 
image frequencies which appear above the Nyquist 
frequency. Fig 3 shows the frequency response of 
an example interpolation filter, designed (using the 
well-known Parks-McClellan equiripple method) for 
4× oversampling of 44.1kHz data with the following 
specifications:

	passband upper frequency	20kHz
	passband ripple			0.01dB
	stopband lower frequency	24kHz
	stopband attenuation		100dB

Fig 2. How the summing of sinc(x) functions – one per signal sample – 
builds the waveform between sampling points

	This is illustrated in Fig 2, which shows six 
successive sinc functions of different amplitude 
and their sum (the black trace). Each sinc function 
contributes nothing to the summed signal amplitude 
at other sampling points, but does contribute to the 
waveform between the sampling points. It’s a common 
misunderstanding of sampling to suppose that the 
waveform between sampling points is unknowable 
but that is not true – provided that the input signal 
is bandlimited and sampled at least twice as fast 
as its highest component frequency, as required 
by the Shannon sampling process. In that case 
the waveform between sampling points can be 
reconstructed unambiguously. Importantly, the Fig 3. Frequency response of an example 4× interpolation filter
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least double that of the highest signal frequency, each 
sample amplitude represents the amplitude of the 
associated sinc(x) waveform centred on that sampling 
point. At all other sampling points the value of that 
particular sinc(x) function is zero, just as the value of 
the sinc(x) functions centred on each other sampling 
point are zero here. So sampling the waveform as 
described extracts all the information necessary to 
reconstruct it, and to do so with complete accuracy.
	This is the analogue-to-digital conversion process, 
and it’s entirely practicable. All we have to add to 
make it realisable in practice is quantisation of the 
amplitude measurement, so that each sample value 
can be represented by a number of finite length. 
	By contrast, the waveform reconstruction 
process – digital-to-analogue conversion – is not 
so simple. In an ideal world it would be achieved 
by generating an impulse of appropriate amplitude 
for each sampling point and passing the train of 
regularly spaced impulses through an ideal low-pass 
filter with its passband upper edge set to half the 
sampling rate. The impulse response of such a filter 
is the sinc function, so each impulse would generate 
a sinc waveform of the necessary amplitude, and 
the train of sinc functions would sum to recreate 
the original waveform.

wave shape depends not just on the value of nearby 
samples but, ultimately, on the pattern of samples 
throughout the sampled signal.
	In practice this theoretical DAC scheme is 
unrealisable, for two reasons. First, the ideal low-pass 
filter, with infinite roll-off rate at the passband edge, 
exists only in abstractions – in the real world, where 
filters always have finite rates of roll-off, it can only 
be approximated. Second, even if the perfect low-pass 
filter were not a dream, this approach would provide 
inadequate signal-to-noise ratio because of the tiny 
amount of energy contained in each impulse.
	In real-world DACs two compromises have to 
be made. First, the amplitude of each sample is 
not represented as an impulse but as a step which 
is maintained for an entire sampling period. This 
‘sample and hold’ process obviates the signal-
to-noise issue but results in a non-flat frequency 
response that rolls off gently towards the Nyquist 
frequency (half the sample rate). The fix is trivial: 
the roll-off can be, and routinely is, corrected by 
equalisation. The second compromise I’ve already 
alluded to. Because an ideal low-pass filter is 
unachievable, one with a slower rate of roll-off must 
be substituted – and then it won’t provide sinc(x) 
impulse response.
	The way this last issue is habitually addressed is 
simply to ignore it. The analogue output filter (or in 
oversampled systems, the digital interpolation filter) 
is considered adequate if it achieves sufficiently good 
frequency domain performance, ie sufficiently flat 
passband response and adequate attenuation of the 
image frequencies which appear above the Nyquist 
frequency. Fig 3 shows the frequency response of 
an example interpolation filter, designed (using the 
well-known Parks-McClellan equiripple method) for 
4× oversampling of 44.1kHz data with the following 
specifications:

	passband upper frequency	20kHz
	passband ripple			0.01dB
	stopband lower frequency	24kHz
	stopband attenuation		100dB

Fig 2. How the summing of sinc(x) functions – one per signal sample – 
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waveform between sampling points is unknowable 
but that is not true – provided that the input signal 
is bandlimited and sampled at least twice as fast 
as its highest component frequency, as required 
by the Shannon sampling process. In that case 
the waveform between sampling points can be 
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be substituted – and then it won’t provide sinc(x) 
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	The way this last issue is habitually addressed is 
simply to ignore it. The analogue output filter (or in 
oversampled systems, the digital interpolation filter) 
is considered adequate if it achieves sufficiently good 
frequency domain performance, ie sufficiently flat 
passband response and adequate attenuation of the 
image frequencies which appear above the Nyquist 
frequency. Fig 3 shows the frequency response of 
an example interpolation filter, designed (using the 
well-known Parks-McClellan equiripple method) for 
4× oversampling of 44.1kHz data with the following 
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and their sum (the black trace). Each sinc function 
contributes nothing to the summed signal amplitude 
at other sampling points, but does contribute to the 
waveform between the sampling points. It’s a common 
misunderstanding of sampling to suppose that the 
waveform between sampling points is unknowable 
but that is not true – provided that the input signal 
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as its highest component frequency, as required 
by the Shannon sampling process. In that case 
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sampling rate. The impulse response of  such a filter 
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response that rolls off  gently towards the Nyquist 
frequency (half  the sample rate). The fix is trivial: 
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unachievable, one with a slower rate of  roll-off  must 
be substituted – and then it won’t provide sinc(x) 
impulse response.
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oversampled systems, the digital interpolation filter) 
is considered adequate if  it achieves sufficiently good 
frequency domain performance, ie sufficiently flat 
passband response and adequate attenuation of  the 
image frequencies which appear above the Nyquist 
frequency. Fig 3 shows the frequency response of  
an example interpolation filter, designed (using the 
well-known Parks-McClellan equiripple method) for 
4× oversampling of  44.1kHz data with the following 
specifications:

	 passband upper frequency	20kHz
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	 stopband lower frequency	24kHz
	 stopband attenuation		  100dB
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builds the waveform between sampling points
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and their sum (the black trace). Each sinc function 
contributes nothing to the summed signal amplitude 
at other sampling points, but does contribute to the 
waveform between the sampling points. It’s a common 
misunderstanding of  sampling to suppose that the 
waveform between sampling points is unknowable 
but that is not true – provided that the input signal 
is bandlimited and sampled at least twice as fast 
as its highest component frequency, as required 
by the Shannon sampling process. In that case 
the waveform between sampling points can be 
reconstructed unambiguously. Importantly, the Fig 3. Frequency response of  an example 4× interpolation filter
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The resulting FIR filter has 215 coefficients (taps) 
and, as it’s linear-phase, a time-symmetrical impulse 
response. Attenuation at the Nyquist frequency 
(22.05kHz) is about 10dB. The filter impulse 
response is shown in Fig 4, overlaying the sinc 
function of  Figure 1 but here across a wider range 
of  sampling intervals to accommodate the number 
of  filter coefficients. Fig 5 repeats the data of  Fig 
4, but represented on a decibel amplitude scale. 
It is clear from both graphs that the interpolation 
filter – though it meets representative frequency 
domain criteria – has an impulse response that is 
quite different from the sinc(x) function, and not just 
because it’s shorter.

of  sin(x)/x, so it behaves as 1/x where x = Nπ 
(angle in radians), N here being the number of  
sampling intervals away from the central peak. For the 
envelope to be 100dB down from its peak value 1/x 
= 0.000001, which is equivalent to N = 31,831. This 
sample length is required either side of  the central 
peak, so the total length of  the sinc(x) excerpt is 
double this. In other words, for 44.1kHz sampling rate 
the total length of  the required sinc function excerpt 
is 1.443 secs – pretty close to the filter length provided 
by Chord’s M Scaler.
	 This, in a nutshell, explains Watts’ pursuit of  
unprecedentedly long interpolation filters, which 
he designs using what’s known as a windowed-sinc 
technique. As the previous paragraph suggests, this 
involves extracting a chunk from the centre of  the 
sinc function, but for optimum results this process 
needs to be more subtle than a simple ‘lift’ of  the sinc 
function values and truncation of  the remainder. Better 
results are obtained if  the excerpted sinc function 
is windowed, ie shaped, to avoid sudden truncation 
at either end. Watt’s WTA (Watts Time Alignment) 
windowing algorithm is a closely guarded secret, and 
it has had to be refined as filter lengths have increased, 
but its name indicates Watts’ principal design criterion: 
the maintenance of  accurate transient timing.
	 So far as I’m aware, no other designer has followed 
in Watts’ footsteps. And you have to suppose it 
would be a daunting task to do so, given the decades 
that Watts has been treading his lonely path. But if  
someone was minded to try – especially given the 
generally positive critical reception of  Chord’s digital 
products – how might they go about it?
	 The first thing to do is convince yourself  that 
Watts’ approach is right. The simple way to do that, 
naturally, is to listen to Chord’s products, ideally a 
selection of  them that chart the course of  increased 
filter length. But there is another way, which is a 
lot cheaper than acquiring a collection of  Chord 
hardware and much easier than taking the very major 
step of  programming an FPGA. That’s to perform 
sinc interpolation offline, in software.
	 I first wrote a software utility to do this over 10 
years ago – and compared to FPGA programming it’s 
an absolute doddle. The problem is, the program takes 
ages to run with anything longer than a very short 
audio file because it requires the calculation of  (U-1) 
× N2 sin(x)/x values, where U is the oversampling 
factor and N is the number of  samples in the file. 
This is for each channel. But, like I say, it’s easy, it’s 
cheap, and it allows you to generate and listen to a file 
that’s been oversampled using full sinc interpolation, 
in which respect it’s even better than the M Scaler. 
Once you have the file, it can be used as a reference 
against which to audition others generated using 

Fig 4. Impulse response of  the interpolation filter of  Fig 3 (red trace), 
overlaid on the sinc(x) function (blue trace)

	 Fig 5 emphasises an important point: that the 
envelope of  the sinc(x) function – which is finite 
valued for values of  x from minus infinity to plus 
infinity – decays slowly with time. At 150 sampling 
intervals from its central peak the envelope has only 
decayed by a little over 50dB. The obvious question 
is: by how much must it decay for its contribution 
to inter-sample wave shape to become insignificant? 
That’s not a straightforward question to answer but 
if  we say 100dB, to take the envelope amplitude 
below the 16-bit noise floor for a 0dBFS (full scale) 
sample, we can easily calculate what excerpt of  the 
sync function is required. The envelope of  the sync 
function is determined solely by the denominator 

Fig 5. A repeat of  Fig 4 but this time with decibel amplitude scale
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(22.05kHz) is about 10dB. The filter impulse 
response is shown in Fig 4, overlaying the sinc 
function of  Figure 1 but here across a wider range 
of  sampling intervals to accommodate the number 
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	I first wrote a software utility to do this over 10 
years ago – and compared to FPGA programming it’s 
an absolute doddle. The problem is, the program takes 
ages to run with anything longer than a very short 
audio file because it requires the calculation of (U-1) 
× N2 sin(x)/x values, where U is the oversampling 
factor and N is the number of samples in the file. 
This is for each channel. But, like I say, it’s easy, it’s 
cheap, and it allows you to generate and listen to a file 
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The resulting FIR filter has 215 coefficients (taps) 
and, as it’s linear-phase, a time-symmetrical impulse 
response. Attenuation at the Nyquist frequency 
(22.05kHz) is about 10dB. The filter impulse 
response is shown in Fig 4, overlaying the sinc 
function of Figure 1 but here across a wider range 
of sampling intervals to accommodate the number 
of filter coefficients. Fig 5 repeats the data of Fig 
4, but represented on a decibel amplitude scale. 
It is clear from both graphs that the interpolation 
filter – though it meets representative frequency 
domain criteria – has an impulse response that is 
quite different from the sinc(x) function, and not just 
because it’s shorter.
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(angle in radians), N here being the number of 
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sample length is required either side of the central 
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double this. In other words, for 44.1kHz sampling rate 
the total length of the required sinc function excerpt 
is 1.443 secs – pretty close to the filter length provided 
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function values and truncation of the remainder. Better 
results are obtained if the excerpted sinc function 
is windowed, ie shaped, to avoid sudden truncation 
at either end. Watt’s WTA (Watts Time Alignment) 
windowing algorithm is a closely guarded secret, and 
it has had to be refined as filter lengths have increased, 
but its name indicates Watts’ principal design criterion: 
the maintenance of accurate transient timing.
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(22.05kHz) is about 10dB. The filter impulse 
response is shown in Fig 4, overlaying the sinc 
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The resulting FIR filter has 215 coefficients (taps) 
and, as it’s linear-phase, a time-symmetrical impulse 
response. Attenuation at the Nyquist frequency 
(22.05kHz) is about 10dB. The filter impulse 
response is shown in Fig 4, overlaying the sinc 
function of Figure 1 but here across a wider range 
of sampling intervals to accommodate the number 
of filter coefficients. Fig 5 repeats the data of Fig 
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(22.05kHz) is about 10dB. The filter impulse 
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of  sampling intervals to accommodate the number 
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Fig 6. Spectra of  a short recording of  a single note played on a harpsi-
chord. The red trace is of  the 44.1kHz/16-bit original file, the blue trace 
of  a 4× oversampled version generated using full sinc interpolation

I have a feeling that the M Scaler will 
prove to be one of  the most significant, 
and probably controversial, products of  
2018. It is sure to intrigue those who have 
already found Rob Watts’ DAC designs to 
be a cut above, and just as likely to prompt 
the Monty Montgomerys of  this world to 
dismiss it as delusional.
	 What the M Scaler does is take the 
oversampling technology from the Chord 
Blu MkII upscaling CD transport, and 
package it in a 40.5×235×236mm (hwd), 
2.55kg box at less than half  the price. 
Digital input is available via coaxial S/PDIF 
on two BNC sockets, optical S/PDIF via 
two Toslink sockets, and USB via a type B 
connector, to accommodate a wide range 

of  digital sources. Output is via single 
BNC at 352.8/384kHz, optical S/PDIF 
at 176.4/192kHz or, for full performance 
in conjunction with the Qutest, Hugo 
TT2 or Dave, via dual BNC sockets at 
705.6/768kHz.
	 The key component within the M 
Scaler is the Xilinx XC7A200T FPGA 
(field programmable gate array) chip 
which provides 740 DSP cores. Watts’ 
latest filter architecture (also used in the 
Hugo TT2) employs 528 of  these cores 
running at 4096× sampling frequency, 
comprises half  a million lines of  control 
code and uses 56-bit resolution in the 
calculations. A pass-through option 
is provided to allow instantaneous 
comparison of  input and output, with 

gain correction to ensure that 
there is no disparity in levels. 

[Oversampling can result 
in interpolated 

sample values 
that exceed 
0dBFS (full 
scale), requiring a 

gain reduction to 
accommodate them.]

	 Initial testing with 512,000 taps 

Chord Electronics M Scaler

Reference

1) Shannon, C E. ‘A 
Mathematical Theory of  
Communication’, Bell System 
Technical Journal (1948). 
Reprinted in book form, 
with a layman’s introduction 
by Warren Weaver, as ‘The 
Mathematical Theory of  
Communication’, University 
of  Illinois Press.

finite-length interpolation filters of  different designs.
	 To show you an example, I ran the code using a 
short (0.98 second) mono, 44.1kHz/16-bit WAV file 
containing a single note played on a harpsichord. For 
4× oversampling, the processing (which uses 64-bit 
floating point arithmetic and generates a 24-bit output 
WAV file) took 295 seconds – over 300× real time 
– running on a single processor core of  my ageing 
desktop computer. 
	 Fig 6 overlays the spectrum of  the original file 
(red trace) and that of  the oversampled file (blue 
trace), showing (a) that the two overlap as they 
should through the passband, and (b) that the sinc 
interpolation really does result in brick-wall low-
pass filtering at 22.05kHz, the noise floor above that 
frequency being due to dither. (The original file was 
analysed using a 4096-point FFT and the interpolated 
file with a 16,384-point FFT, to ensure that the spectra 
have the same frequency resolution.)
	 I’ve suggested in the past, albeit never in print 
before, that someone with access to heavyweight 

number-crunching might use it to create a readily 
accessible cache of  sinc-interpolated music files, 
precisely for the development of  improved 
interpolation filters. This may not be an act of  
philanthropy likely to secure you a cover of  Time 
magazine – but audiophiles might forever revere your 
name. Anyone interested?

gave what Watts describes as a “completely 
unexpected” magnitude of  improvement 
over the 164,000 taps of  the Dave, so the 
target was raised to over a million taps. 
At the 705.6/768kHz output sampling 
rate (16× 44.1/48kHz) this means a 
latency – the delay between input and 
output – of  around 0.6 seconds while 
the M Scaler performs its calculations on 
the first sample. Because this delay would 
cause unacceptable lip-sync issues when 
the audio accompanies video, the M 
Scaler offers a video input which uses an 
asymmetric interpolation filter instead that 
reduces the latency to an acceptable 0.1 
secs.
	 What are the perceived sound quality 
benefits? Watts says that the improved 
transient accuracy of  the longer filter 
makes instrumental timbre clearer, tightens 
bass and “dramatically” opens up the 
soundstage. “After you’ve listened to the M 
Scaler”, he says, “it’s very difficult to listen 
to the Hugo TT2 or Dave.” And has his 
thirst for more filter taps now been sated? 
No: “My gut feeling is that we need to go 
further.”
	 Available this autumn, the M Scaler will 
be priced at £3495.
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Hugo TT2) employs 528 of  these cores 
running at 4096× sampling frequency, 
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magazine – but audiophiles might forever revere your 
name. Anyone interested?

gave what Watts describes as a “completely 
unexpected” magnitude of improvement 
over the 164,000 taps of the Dave, so the 
target was raised to over a million taps. 
At the 705.6/768kHz output sampling 
rate (16× 44.1/48kHz) this means a 
latency – the delay between input and 
output – of around 0.6 seconds while 
the M Scaler performs its calculations on 
the first sample. Because this delay would 
cause unacceptable lip-sync issues when 
the audio accompanies video, the M 
Scaler offers a video input which uses an 
asymmetric interpolation filter instead that 
reduces the latency to an acceptable 0.1 
secs.
	What are the perceived sound quality 
benefits? Watts says that the improved 
transient accuracy of the longer filter 
makes instrumental timbre clearer, tightens 
bass and “dramatically” opens up the 
soundstage. “After you’ve listened to the M 
Scaler”, he says, “it’s very difficult to listen 
to the Hugo TT2 or Dave.” And has his 
thirst for more filter taps now been sated? 
No: “My gut feeling is that we need to go 
further.”
	Available this autumn, the M Scaler will 
be priced at £3495.
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Fig 6. Spectra of a short recording of a single note played on a harpsi-
chord. The red trace is of the 44.1kHz/16-bit original file, the blue trace 
of a 4× oversampled version generated using full sinc interpolation

I have a feeling that the M Scaler will 
prove to be one of the most significant, 
and probably controversial, products of 
2018. It is sure to intrigue those who have 
already found Rob Watts’ DAC designs to 
be a cut above, and just as likely to prompt 
the Monty Montgomerys of this world to 
dismiss it as delusional.
	What the M Scaler does is take the 
oversampling technology from the Chord 
Blu MkII upscaling CD transport, and 
package it in a 40.5×235×236mm (hwd), 
2.55kg box at less than half the price. 
Digital input is available via coaxial S/PDIF 
on two BNC sockets, optical S/PDIF via 
two Toslink sockets, and USB via a type B 
connector, to accommodate a wide range 

of digital sources. Output is via single 
BNC at 352.8/384kHz, optical S/PDIF 
at 176.4/192kHz or, for full performance 
in conjunction with the Qutest, Hugo 
TT2 or Dave, via dual BNC sockets at 
705.6/768kHz.
	The key component within the M 
Scaler is the Xilinx XC7A200T FPGA 
(field programmable gate array) chip 
which provides 740 DSP cores. Watts’ 
latest filter architecture (also used in the 
Hugo TT2) employs 528 of these cores 
running at 4096× sampling frequency, 
comprises half a million lines of control 
code and uses 56-bit resolution in the 
calculations. A pass-through option 
is provided to allow instantaneous 
comparison of input and output, with 

gain correction to ensure that 
there is no disparity in levels. 

[Oversampling can result 
in interpolated 

sample values 
that exceed 
0dBFS (full 
scale), requiring a 

gain reduction to 
accommodate them.]

	Initial testing with 512,000 taps 
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finite-length interpolation filters of different designs.
	To show you an example, I ran the code using a 
short (0.98 second) mono, 44.1kHz/16-bit WAV file 
containing a single note played on a harpsichord. For 
4× oversampling, the processing (which uses 64-bit 
floating point arithmetic and generates a 24-bit output 
WAV file) took 295 seconds – over 300× real time 
– running on a single processor core of my ageing 
desktop computer. 
	Fig 6 overlays the spectrum of the original file 
(red trace) and that of the oversampled file (blue 
trace), showing (a) that the two overlap as they 
should through the passband, and (b) that the sinc 
interpolation really does result in brick-wall low-
pass filtering at 22.05kHz, the noise floor above that 
frequency being due to dither. (The original file was 
analysed using a 4096-point FFT and the interpolated 
file with a 16,384-point FFT, to ensure that the spectra 
have the same frequency resolution.)
	I’ve suggested in the past, albeit never in print 
before, that someone with access to heavyweight 

number-crunching might use it to create a readily 
accessible cache of sinc-interpolated music files, 
precisely for the development of improved 
interpolation filters. This may not be an act of 
philanthropy likely to secure you a cover of Time 
magazine – but audiophiles might forever revere your 
name. Anyone interested?

gave what Watts describes as a “completely 
unexpected” magnitude of improvement 
over the 164,000 taps of the Dave, so the 
target was raised to over a million taps. 
At the 705.6/768kHz output sampling 
rate (16× 44.1/48kHz) this means a 
latency – the delay between input and 
output – of around 0.6 seconds while 
the M Scaler performs its calculations on 
the first sample. Because this delay would 
cause unacceptable lip-sync issues when 
the audio accompanies video, the M 
Scaler offers a video input which uses an 
asymmetric interpolation filter instead that 
reduces the latency to an acceptable 0.1 
secs.
	What are the perceived sound quality 
benefits? Watts says that the improved 
transient accuracy of the longer filter 
makes instrumental timbre clearer, tightens 
bass and “dramatically” opens up the 
soundstage. “After you’ve listened to the M 
Scaler”, he says, “it’s very difficult to listen 
to the Hugo TT2 or Dave.” And has his 
thirst for more filter taps now been sated? 
No: “My gut feeling is that we need to go 
further.”
	Available this autumn, the M Scaler will 
be priced at £3495.
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Fig 6. Spectra of  a short recording of  a single note played on a harpsi-
chord. The red trace is of  the 44.1kHz/16-bit original file, the blue trace 
of  a 4× oversampled version generated using full sinc interpolation
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over the 164,000 taps of  the Dave, so the 
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rate (16× 44.1/48kHz) this means a 
latency – the delay between input and 
output – of  around 0.6 seconds while 
the M Scaler performs its calculations on 
the first sample. Because this delay would 
cause unacceptable lip-sync issues when 
the audio accompanies video, the M 
Scaler offers a video input which uses an 
asymmetric interpolation filter instead that 
reduces the latency to an acceptable 0.1 
secs.
	 What are the perceived sound quality 
benefits? Watts says that the improved 
transient accuracy of  the longer filter 
makes instrumental timbre clearer, tightens 
bass and “dramatically” opens up the 
soundstage. “After you’ve listened to the M 
Scaler”, he says, “it’s very difficult to listen 
to the Hugo TT2 or Dave.” And has his 
thirst for more filter taps now been sated? 
No: “My gut feeling is that we need to go 
further.”
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